
Scripting at the Speed of
Thought

Using Lua in C++ with sol3

September 28th, 2018 – CppCon, Meydenbauer Center

@thephantomderp #sol3an

https://twitter.com/thephantomderp

Scripting

• Treating code as data
• Means of extending your application beyond ship time

• Delegate smaller, simpler tasks to easy-to-use language

Why Script?

• Extending your application
• without re-compilation

• without fragile DLLs/shared libraries

• Lowering barrier to entry
• Complexity of main language (C++, Java, Haskell)

versus complexity of scripting language (Lua, Python, Javascript)

• Little / no IDE or build setup required

“What about the Standard?”

• There is no scripting or interop built into the standard library
• … at all

• Will compare to other libraries, however!

Lua, the Scripting Language

• Simple dynamic language
• Grammar fits on a single page

• Only 1 data structure – table

• Minimalistic library

• Famously used in
• World of Warcraft (WoW), Redis database,

Operating System components, Servers,
Waze GUI, …

Lua, with C code

• Entire VM is tiny and compiled with ANSI C
• Portable to many, many compilers

• Exposes library interface, the Lua C API
• Stack-based: push values, call manipulation operations, pop leftover values

• Fairly fast compared to other VMs

Lua C API: how-to-stack

• my_table[“a”]
• get my_table global

• get field

• lua_to{x} value

• my_func(2)
• push my_func global function

• push argument

• call, get return(s) using lua_to{x}

Okay, let’s scale it up…

other_func(my_table[“a”][“b”], my_func(2))

(╯°□°）╯︵┻━┻

Miss me with that noise, fam.

Limitations of C itself

• No overloading – “which one do I need, again?”

lua_gettable()
lua_getglobal(const char*)
lua_getfield(const char*)

lua_geti(int) // version 5.3+
lua_rawgeti(int)
lua_rawget()
lua_rawgetp(void*)

Wrap/Abstract the C Code

Stack Namespace

• sol::stack namespace that gets rid of all the C code
• stack::push(v) –takes any value and pushes it with appropriate API

• stack::get<T> –takes any type and retrieves it with appropriate API

• stack::check<T> –takes any type and reports if it exists

• “Type Rich” Programming
• Tells us how to push, how to get based on type / argument type

• Improves safety, increases developer throughput

Stack Namespace – Composed Operations

• stack::get_field(key, table_index)
• Optimize to lua_getfield if key is a string (or string-like)

• Optimize to lua_getglobal if we are working with global table

• Otherwise fallback to default lua_gettable

• stack::set_field(key, value, table_index)
• Optimize to lua_setfield if key is a string (or string-like)

• Exactly like above

An example

lua_State* L = ...;

sol::stack::get_field<true>(L, "some_key");

int the_value = sol::stack::get<int>(L, -1);

lua_pop(L, 1);

lua_createtable(L, 0, 2);

sol::stack_reference ref(L, -1);

sol::stack::set_field(L, 1, "val1");

sol::stack::set_field(L, 2, "val2", ref.stack_index());

ref.pop();

Not High Enough

• Still working with the stack, stack indices

• This is good for a C developer, but what about a newcomer?

• C++, have reusable data structures – mimic language:
• table

• function

• userdata

Improving the Abstraction

reference and the rule of zero

0

Abstraction Layer 0

• Lua has a “C registry”
• Place were C API user can store references to Lua constructs

• References are counted: only freed when reference count hits 0

• Want table, function, thread, etc.
• All must be reference counted in C and C++ code!

Abstraction Layer 0: Rule of 0

• sol::reference
• reference counting abstraction

• Slightly similar to boost::intrusive_ptr

• More accurate to proposed std::retain_ptr or ARC references

• wg21.link/p0468

• Increments on copy

• Reference-steals on move

• Decrements on destruct

https://wg21.link/p0468

Abstraction Layer 1: Reuse

• class object : sol::reference { … };
• Just add .as<T>() and .is<T>()

• class function : sol::reference { … };
• Just add .call() and operator()(…)

• class table : sol::reference { … };
• Just add .set() and .get() and operator[](…)

Abstraction Layer 2: Proxy

• Need int x = f(obj) and my_class& y = f(1, 2)
• Do not want to make 2 different types

• Simple struct that has a templated implicit conversion operator

• struct proxy { template <typename T> operator T () { … } };

• my_table[“foo”] = “bar”; std::string bar = my_table[“foo”];
• Same as above, plus:

• operator= to handle assignment from anything

• operator[] to “chain” lookup with int x = my_table[“bark”][“bjork”];

Abstraction Layer 2: Problems

• “Unicorn” Proxies are weak to certain idioms:

• int a, b, c;
std::tie(a, b, c) = f();
• Asks for std::tuple<int&, int&, int&>

• Cannot control return type of implicit or explicit conversions!
• No way to hand back std::tuple<int, int, int>

Abstraction Layer 2: Fixes?

• Relevant fix paper for C++ San Diego meeting
• p1193, Explicit Return Types for Implicit Conversion

• struct proxy {
template <typename T>
handle_weird_tie_stuff_t<T> operator T () { … }

};

Usertypes

The Glory of Sol

Usertypes are A M A Z I N G

• The primary binding glue between C++ and Lua

• Exposes C++ classes, their idioms, their properties cleanly and
efficiently

• But why take my word for it? Let’s just have a quick peek…

D E M O I N P R O G R E S S

But There’s More!

• Usertypes – and sol2 in general – can also work with types and
systems it does not know about

• Put sol in your large commercial codebase, today
• Use it incrementally without problem thanks to sol::state_view

• Transition as fast or as slow as you desire

D E M O I N P R O G R E S S

It is FEATURE PACKED!

• Some people don’t even realize…

Witnessing Realizations in Real-time is fun

Customization Points

And the problem with Defaults

Past Customization: Struct Specializations

• Specialize a template struct getter/checker/pusher
• Works and scales

• Users can add their own specializations

Past Customizations: Problem with Structs

• Users do not like way e.g. int64_t or uint64_t or a container are
handled
• Impossible for them to extend if they are not careful of mutually exclusive

SFINAE

Customization Layer Mk. II

• Customization points are instead functions
• attempt to call via ADL and priority tags (Thanks, Arthur O’Dwyer!)

• sol_unqualified_get(priority_tag, types<custom_string>, …);
• Hand user a priority tag type with higher ranking:

• using priority_tag = max_priority;

• Keep struct specializations for “fallback” and “defaults”
• Clean separation

Customization Layer Mk. II: Compile Harder

• N.B.: they are just regular functions
• Implement in cpp files, export them

• Compile heckin’ fast

• Everyone knows how to write a function (!!)

• Users do not have to understand SFINAE or template struct
specialization
• Vastly smaller amount of people SFINAE and struct specialize

• Decreases barrier to entry

Speaking of Compile Times…

Compile Times + Compiler Memory Usage

• Too. Damn. High.

Tuple and SFINAE: the Greater Evils

A Spark of Moonlit Inspiration…

• “Can I keep the same speed and still remove tuple and a lot of
compile time information”?
• Benchmark cpp file for sol3 took about 15% less time than sol2 benchmark

file

• But did we keep the same performance?!

So I implemented it. Today.

• In the dark of the night. Just before my presentation.

• The “I Like Anxiety” Challenge:
• Ran benchmarks overnight and promised myself that I would modify

presentation with the numbers in the morning

Idea: Virtual Base class, templated data?

• Essentially:
• std::vector<std::unique_ptr<binding_base>>

• Do 4 things:
• Store data in vector to give it a never-changing memory address

• Get data as void* to transport through Lua + templated free function

• Make sure either side of Lua abstraction preserves type information

• Pass along the exact address

Sun Came Up, Benchmarks Finished…

Nice.

Nice.

Nice.

Nice.

Nailed It

• Great performance metrics
• So much room to decrease compile times

• So many more features enabled by this exploration and the advancements!

• sol3 pushed to its own branch
• Until tests are converted and all pass

• Hope to have something by the end of October, before the C++ San Diego
meeting starts

My felt gratitude…

• #include – for the graphs and being a wonderful community
• Inspired a Python Talk

• Companies and individuals who have used sol2 to success and have
recommended it to others!
• Corentin, Elias Daler, Orfeasz, Xottab_DUTY, and donators up to this point!

• Jason Turner for telling me to start talking about sol2 and sol3!

• Mother Eugenie, Sister Lorigiana

Thank YOU for coming!

It’s hard to choose against Sean Parent and Hyrum Wright and Matt Godbolt and
Odin Holmes! So thank you for making my first CppCon talk a great one!

https://www.linkedin.com/in/thephd

https://www.patreon.com/thephd@thephantomderp #sol3an

https://github.com/ThePhD/

https://github.com/ThePhD/sol2

https://www.linkedin.com/in/thephd
https://www.patreon.com/thephd
https://twitter.com/thephantomderp
https://github.com/ThePhD/
https://github.com/ThePhD/sol2

